Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The TOR signaling cascade regulates gene expression in response to nutrients.

Identifieur interne : 001A47 ( Main/Exploration ); précédent : 001A46; suivant : 001A48

The TOR signaling cascade regulates gene expression in response to nutrients.

Auteurs : M E Cardenas [États-Unis] ; N S Cutler ; M C Lorenz ; C J Di Como ; J. Heitman

Source :

RBID : pubmed:10617575

Descripteurs français

English descriptors

Abstract

Rapamycin inhibits the TOR kinases, which regulate cell proliferation and mRNA translation and are conserved from yeast to man. The TOR kinases also regulate responses to nutrients, including sporulation, autophagy, mating, and ribosome biogenesis. We have analyzed gene expression in yeast cells exposed to rapamycin using arrays representing the whole yeast genome. TOR inhibition by rapamycin induces expression of nitrogen source utilization genes controlled by the Ure2 repressor and the transcriptional regulator Gln3, and globally represses ribosomal protein expression. gln3 mutations were found to confer rapamycin resistance, whereas ure2 mutations confer rapamycin hypersensitivity, even in cells expressing dominant rapamycin-resistant TOR mutants. We find that Ure2 is a phosphoprotein in vivo that is rapidly dephosphorylated in response to rapamycin or nitrogen limitation. In summary, our results reveal that the TOR cascade plays a prominent role in regulating transcription in response to nutrients in addition to its known roles in regulating translation, ribosome biogenesis, and amino acid permease stability.

DOI: 10.1101/gad.13.24.3271
PubMed: 10617575
PubMed Central: PMC317202


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The TOR signaling cascade regulates gene expression in response to nutrients.</title>
<author>
<name sortKey="Cardenas, M E" sort="Cardenas, M E" uniqKey="Cardenas M" first="M E" last="Cardenas">M E Cardenas</name>
<affiliation wicri:level="2">
<nlm:affiliation>Departments of Genetics, Duke University Medical Center, Durham, North Carolina 27710 USA. carde004@mc.duke.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Departments of Genetics, Duke University Medical Center, Durham</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Cutler, N S" sort="Cutler, N S" uniqKey="Cutler N" first="N S" last="Cutler">N S Cutler</name>
</author>
<author>
<name sortKey="Lorenz, M C" sort="Lorenz, M C" uniqKey="Lorenz M" first="M C" last="Lorenz">M C Lorenz</name>
</author>
<author>
<name sortKey="Di Como, C J" sort="Di Como, C J" uniqKey="Di Como C" first="C J" last="Di Como">C J Di Como</name>
</author>
<author>
<name sortKey="Heitman, J" sort="Heitman, J" uniqKey="Heitman J" first="J" last="Heitman">J. Heitman</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1999">1999</date>
<idno type="RBID">pubmed:10617575</idno>
<idno type="pmid">10617575</idno>
<idno type="pmc">PMC317202</idno>
<idno type="doi">10.1101/gad.13.24.3271</idno>
<idno type="wicri:Area/Main/Corpus">001A45</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001A45</idno>
<idno type="wicri:Area/Main/Curation">001A45</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001A45</idno>
<idno type="wicri:Area/Main/Exploration">001A45</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The TOR signaling cascade regulates gene expression in response to nutrients.</title>
<author>
<name sortKey="Cardenas, M E" sort="Cardenas, M E" uniqKey="Cardenas M" first="M E" last="Cardenas">M E Cardenas</name>
<affiliation wicri:level="2">
<nlm:affiliation>Departments of Genetics, Duke University Medical Center, Durham, North Carolina 27710 USA. carde004@mc.duke.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Departments of Genetics, Duke University Medical Center, Durham</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Cutler, N S" sort="Cutler, N S" uniqKey="Cutler N" first="N S" last="Cutler">N S Cutler</name>
</author>
<author>
<name sortKey="Lorenz, M C" sort="Lorenz, M C" uniqKey="Lorenz M" first="M C" last="Lorenz">M C Lorenz</name>
</author>
<author>
<name sortKey="Di Como, C J" sort="Di Como, C J" uniqKey="Di Como C" first="C J" last="Di Como">C J Di Como</name>
</author>
<author>
<name sortKey="Heitman, J" sort="Heitman, J" uniqKey="Heitman J" first="J" last="Heitman">J. Heitman</name>
</author>
</analytic>
<series>
<title level="j">Genes & development</title>
<idno type="ISSN">0890-9369</idno>
<imprint>
<date when="1999" type="published">1999</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Culture Media (MeSH)</term>
<term>Cycloheximide (pharmacology)</term>
<term>Drosophila Proteins (MeSH)</term>
<term>Fungal Proteins (genetics)</term>
<term>Gene Expression Regulation, Fungal (drug effects)</term>
<term>Genotype (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Mitochondria (metabolism)</term>
<term>Nitrogen (metabolism)</term>
<term>Receptor Protein-Tyrosine Kinases (metabolism)</term>
<term>Ribosomal Proteins (genetics)</term>
<term>Saccharomyces cerevisiae (drug effects)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae (physiology)</term>
<term>Signal Transduction (physiology)</term>
<term>Sirolimus (pharmacology)</term>
<term>Transcription, Genetic (drug effects)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Azote (métabolisme)</term>
<term>Cycloheximide (pharmacologie)</term>
<term>Génotype (MeSH)</term>
<term>Humains (MeSH)</term>
<term>Milieux de culture (MeSH)</term>
<term>Mitochondries (métabolisme)</term>
<term>Protéines de Drosophila (MeSH)</term>
<term>Protéines fongiques (génétique)</term>
<term>Protéines ribosomiques (génétique)</term>
<term>Récepteurs à activité tyrosine kinase (métabolisme)</term>
<term>Régulation de l'expression des gènes fongiques (effets des médicaments et des substances chimiques)</term>
<term>Saccharomyces cerevisiae (effets des médicaments et des substances chimiques)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Saccharomyces cerevisiae (physiologie)</term>
<term>Sirolimus (pharmacologie)</term>
<term>Transcription génétique (effets des médicaments et des substances chimiques)</term>
<term>Transduction du signal (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Fungal Proteins</term>
<term>Ribosomal Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Nitrogen</term>
<term>Receptor Protein-Tyrosine Kinases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Cycloheximide</term>
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Culture Media</term>
<term>Drosophila Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Gene Expression Regulation, Fungal</term>
<term>Saccharomyces cerevisiae</term>
<term>Transcription, Genetic</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Régulation de l'expression des gènes fongiques</term>
<term>Saccharomyces cerevisiae</term>
<term>Transcription génétique</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Protéines fongiques</term>
<term>Protéines ribosomiques</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Mitochondria</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Azote</term>
<term>Mitochondries</term>
<term>Récepteurs à activité tyrosine kinase</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Cycloheximide</term>
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
<term>Transduction du signal</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Genotype</term>
<term>Humans</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Génotype</term>
<term>Humains</term>
<term>Milieux de culture</term>
<term>Protéines de Drosophila</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Rapamycin inhibits the TOR kinases, which regulate cell proliferation and mRNA translation and are conserved from yeast to man. The TOR kinases also regulate responses to nutrients, including sporulation, autophagy, mating, and ribosome biogenesis. We have analyzed gene expression in yeast cells exposed to rapamycin using arrays representing the whole yeast genome. TOR inhibition by rapamycin induces expression of nitrogen source utilization genes controlled by the Ure2 repressor and the transcriptional regulator Gln3, and globally represses ribosomal protein expression. gln3 mutations were found to confer rapamycin resistance, whereas ure2 mutations confer rapamycin hypersensitivity, even in cells expressing dominant rapamycin-resistant TOR mutants. We find that Ure2 is a phosphoprotein in vivo that is rapidly dephosphorylated in response to rapamycin or nitrogen limitation. In summary, our results reveal that the TOR cascade plays a prominent role in regulating transcription in response to nutrients in addition to its known roles in regulating translation, ribosome biogenesis, and amino acid permease stability.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">10617575</PMID>
<DateCompleted>
<Year>2000</Year>
<Month>01</Month>
<Day>27</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>05</Month>
<Day>23</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0890-9369</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>13</Volume>
<Issue>24</Issue>
<PubDate>
<Year>1999</Year>
<Month>Dec</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>Genes & development</Title>
<ISOAbbreviation>Genes Dev</ISOAbbreviation>
</Journal>
<ArticleTitle>The TOR signaling cascade regulates gene expression in response to nutrients.</ArticleTitle>
<Pagination>
<MedlinePgn>3271-9</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Rapamycin inhibits the TOR kinases, which regulate cell proliferation and mRNA translation and are conserved from yeast to man. The TOR kinases also regulate responses to nutrients, including sporulation, autophagy, mating, and ribosome biogenesis. We have analyzed gene expression in yeast cells exposed to rapamycin using arrays representing the whole yeast genome. TOR inhibition by rapamycin induces expression of nitrogen source utilization genes controlled by the Ure2 repressor and the transcriptional regulator Gln3, and globally represses ribosomal protein expression. gln3 mutations were found to confer rapamycin resistance, whereas ure2 mutations confer rapamycin hypersensitivity, even in cells expressing dominant rapamycin-resistant TOR mutants. We find that Ure2 is a phosphoprotein in vivo that is rapidly dephosphorylated in response to rapamycin or nitrogen limitation. In summary, our results reveal that the TOR cascade plays a prominent role in regulating transcription in response to nutrients in addition to its known roles in regulating translation, ribosome biogenesis, and amino acid permease stability.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Cardenas</LastName>
<ForeName>M E</ForeName>
<Initials>ME</Initials>
<AffiliationInfo>
<Affiliation>Departments of Genetics, Duke University Medical Center, Durham, North Carolina 27710 USA. carde004@mc.duke.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cutler</LastName>
<ForeName>N S</ForeName>
<Initials>NS</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lorenz</LastName>
<ForeName>M C</ForeName>
<Initials>MC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Di Como</LastName>
<ForeName>C J</ForeName>
<Initials>CJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Heitman</LastName>
<ForeName>J</ForeName>
<Initials>J</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>KO1 CA77075</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AI41937</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Genes Dev</MedlineTA>
<NlmUniqueID>8711660</NlmUniqueID>
<ISSNLinking>0890-9369</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D003470">Culture Media</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029721">Drosophila Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012269">Ribosomal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>98600C0908</RegistryNumber>
<NameOfSubstance UI="D003513">Cycloheximide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.10.1</RegistryNumber>
<NameOfSubstance UI="D020794">Receptor Protein-Tyrosine Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.10.1</RegistryNumber>
<NameOfSubstance UI="C080148">tor protein, Drosophila</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N762921K75</RegistryNumber>
<NameOfSubstance UI="D009584">Nitrogen</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>W36ZG6FT64</RegistryNumber>
<NameOfSubstance UI="D020123">Sirolimus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D003470" MajorTopicYN="N">Culture Media</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003513" MajorTopicYN="N">Cycloheximide</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029721" MajorTopicYN="Y">Drosophila Proteins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015966" MajorTopicYN="Y">Gene Expression Regulation, Fungal</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005838" MajorTopicYN="N">Genotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008928" MajorTopicYN="N">Mitochondria</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009584" MajorTopicYN="N">Nitrogen</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020794" MajorTopicYN="N">Receptor Protein-Tyrosine Kinases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012269" MajorTopicYN="N">Ribosomal Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020123" MajorTopicYN="N">Sirolimus</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014158" MajorTopicYN="N">Transcription, Genetic</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2000</Year>
<Month>1</Month>
<Day>5</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2000</Year>
<Month>1</Month>
<Day>5</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2000</Year>
<Month>1</Month>
<Day>5</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">10617575</ArticleId>
<ArticleId IdType="pmc">PMC317202</ArticleId>
<ArticleId IdType="doi">10.1101/gad.13.24.3271</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Cell Endocrinol. 1999 Sep 10;155(1-2):135-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10580846</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1983 Jan 10;258(1):119-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6129248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1984 Dec;4(12):2758-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6152012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1988 Feb;170(2):708-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2892826</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1991 Feb;11(2):822-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1990286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1991;194:3-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2005794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1991 Aug 23;253(5022):905-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1715094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1991 Dec;11(12):6216-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1682800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):4076-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8633019</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1996 Aug 1;10(15):1904-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8756348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1996 Aug;178(15):4734-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8755910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1999 Apr;10(4):987-1000</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10198052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Apr 23;274(17):11647-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10206976</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1999 May 17;18(10):2782-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10329624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1999 Jul 5;260(2):534-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10403802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Growth Differ. 1999 Jul;10(7):503-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10437918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1999 Aug;10(8):2531-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10436010</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1993 May 7;73(3):585-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8387896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1992 Mar 20;68(6):1077-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1547504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1992 Jul 2;358(6381):70-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1614535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1992 Aug 14;257(5072):973-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1380182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1993 Oct;13(10):6012-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8413204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 1994 Feb 15;54(4):903-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7508822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1994 Apr 22;264(5158):566-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7909170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1994 Jan;5(1):105-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8186460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1994 Jun 30;369(6483):756-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8008069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1994 Jul 15;78(1):35-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7518356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1995 Jan 13;270(2):815-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7822316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1995 Apr;15(4):2321-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7891726</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 1995 May 1;55(9):1982-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7728769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1994 Dec;10(13):1793-808</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7747518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1995 Jul 14;82(1):121-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7606777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1995 Aug 4;270(31):18531-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7629182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1995 Aug 1;92(16):7222-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7638171</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1995 Oct 10;92(21):9450-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7568152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1995 Oct 5;377(6548):441-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7566123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1995 Dec 1;14(23):5892-907</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8846782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1996 Feb 1;10(3):279-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8595879</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1996 Jan;7(1):25-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8741837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Apr 1;94(7):3070-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9096347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1997 Jul 4;277(5322):99-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9204908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 1997 Sep;22(9):345-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9301335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1997 Oct;179(20):6325-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9335279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Sep 30;94(20):10624-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9380685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1997 Dec 1;16(23):7008-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9384580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 1997 Dec;9(6):782-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9425342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Feb 13;273(7):3963-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9461583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1432-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9465032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1998 Aug 10;17(5):1236-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9482721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4264-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9539725</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Jun 5;273(23):14484-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9603962</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1998 Jun 29;247(3):827-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9647778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 1998 Jul 15;92(2):539-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9657754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1998 Aug;18(8):4463-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9671456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Oct 23;273(43):28178-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9774438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biotechnol. 1998 Oct;16(10):427-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9807840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol. 1998 Nov;275(5 Pt 1):C1232-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9814971</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1998 Dec 1;17(23):6924-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9843498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Jan 8;274(2):1058-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9873051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Jan 8;274(2):1092-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9873056</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 1999 Feb 15;59(4):886-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10029080</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Caroline du Nord</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Cutler, N S" sort="Cutler, N S" uniqKey="Cutler N" first="N S" last="Cutler">N S Cutler</name>
<name sortKey="Di Como, C J" sort="Di Como, C J" uniqKey="Di Como C" first="C J" last="Di Como">C J Di Como</name>
<name sortKey="Heitman, J" sort="Heitman, J" uniqKey="Heitman J" first="J" last="Heitman">J. Heitman</name>
<name sortKey="Lorenz, M C" sort="Lorenz, M C" uniqKey="Lorenz M" first="M C" last="Lorenz">M C Lorenz</name>
</noCountry>
<country name="États-Unis">
<region name="Caroline du Nord">
<name sortKey="Cardenas, M E" sort="Cardenas, M E" uniqKey="Cardenas M" first="M E" last="Cardenas">M E Cardenas</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001A47 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001A47 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:10617575
   |texte=   The TOR signaling cascade regulates gene expression in response to nutrients.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:10617575" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020